The Fefferman-stein Type Inequality for Strong Maximal Operator in the Heigher Dimensions

نویسندگان

  • HITOSHI TANAKA
  • H. TANAKA
چکیده

The Fefferman-Stein type inequality for strong maximal operator is verified with compositions of some maximal operators in the heigher dimensions. An elementary proof of the endpoint estimate for the strong maximal operator is also given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on the Fefferman-stein Inequality

We investigate the Fefferman-Stein inequality related a function f and the sharp maximal function f on a Banach function space X. It is proved that this inequality is equivalent to a certain boundedness property of the Hardy-Littlewood maximal operatorM . The latter property is shown to be self-improving. We apply our results in several directions. First, we show the existence of nontrivial spa...

متن کامل

Two weight norm inequalities for fractional one-sided maximal and integral operators

In this paper, we give a generalization of Fefferman-Stein inequality for the fractional one-sided maximal operator: Z +∞ −∞ M α (f)(x) w(x) dx ≤ Ap Z +∞ −∞ |f(x)|M αp(w)(x) dx, where 0 < α < 1 and 1 < p < 1/α. We also obtain a substitute of dual theorem and weighted norm inequalities for the one-sided fractional integral I α .

متن کامل

Vector-valued singular integrals and maximal functions on spaces of homogeneous type

The Fefferman-Stein vector-valued maximal function inequality is proved for spaces of homogeneous type. The approach taken here is based on the theory of vector-valued Calderón-Zygmund singular integral theory in this context, which is appropriately developed.

متن کامل

A Covering Lemma for Rectangles in R

We prove a covering lemma for rectangles in Rn which has connections to a problem of Zygmund and its solution in three dimensions by Cordoba. One of the objectives of this note is to revive interest in a collection of problems in differentiation theory related to a conjecture of Zygmund. We shall also give another proof of the sharp mapping properties near L of the strong maximal operator by pr...

متن کامل

Vector - valued sharp maximal inequality on the Morrey spaces with non - doubling measures

In this paper we consider the vector-valued extension of the Fefferman-Stein-Stronberg sharp maximal inequality under growth condition. As an application we obtain the vectorvalued extension of the boundedness of the commutator. Furthermore we prove the boundedness of the commutator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016